Part Number Hot Search : 
UF5408 IRF73 L4741 100GP 128128 HFP830 FR105G IC1730
Product Description
Full Text Search
 

To Download MAX1994EVKIT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max1994 evaluation kit (ev kit) is a complete triple- output regulator for notebook computer applications. this fully assembled and tested circuit board provides a digitally adjustable 0.925v to 2.000v output voltage (5-bit on-board dac) for cpu rail, fixed 2.5v output voltage for i/o and memory supplies, and a 1.2v linear regulator for a cpu vid supply. the battery input volt- age range is 7v to 24v. the ev kit operates at 300khz switching frequency and has superior line- and load- transient response. the dc-to-dc converter steps down high-voltage bat- teries and/or ac adapters, generating a precision, dynamically adjustable, low-voltage cpu core rail (buck1), and a fixed 2.5v output for i/o and memory supplies (buck2). the max1994 ev kit consists of the max1994 dual quick-pwm master step-down con- troller and the max1980 slave controller. the max1994 ev kit includes active voltage positioning with adjustable gain and offset, reducing power dissipation and bulk output capacitance requirements for buck1. the max1994 includes a specialized digital interface, making it suitable for mobile cpu and video processor applications. the max1980 provides additional gate- drive circuitry, phase synchronization, current limit, and current balancing. precision slew-rate control provides ?ust-in-time?arrival at the new dac setting, minimizing surge currents to and from the battery. this ev kit can also be used to evaluate the max1816, which has an adjustable output from 0.600v to 1.750v using an alternate vid code set. features high speed, accurate, and efficient active voltage positioning with adjustable gain and offset low-bulk output capacitor count (buck1) multiphase dual quick-pwm architecture buck1: 0.925v to 2.000v output-voltage range (5-bit dac) 40a load-current capability (20a each phase) buck2: 2.5v preset output voltage (adjustable with external resistors) 7a load-current capability 1.2v, 500ma linear output voltage 7v to 24v input voltage range 300khz switching frequency 48-pin qfn package (max1994) 20-pin qfn package (max1980) low-profile components fully assembled and tested evaluates: max1816/max1980/max1994 max1994 evaluation kit ________________________________________________________________ maxim integrated products 1 19-2692; rev 0; 12/02 component list for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. ordering information part temp range ic package MAX1994EVKIT 0 c to +70 c 48 qfn (max1994), 20 qfn (max1980) designation qty description c1, c20, c22, c43, c44 0 not installed (1812) c2, c3, c4, c21, c41, c42, c45 7 10f, 25v x5r ceramic capacitors (1812) taiyo yuden tmk432bj106km or tdk c4532x5r1e106m c5, c6, c10, c18, c31, c32, c33 7 330f, 2.5v , 10m ? l ow - e s r sp eci al ty p ol ym er cap aci tor s ( e case) p anasoni c e e fu e 0e 331x r c7, c13, c16, c19, c26, c34, c35 0 not installed (e case) c8, c12, c38 3 0.22f, 16v x5r ceramic capacitors (0805) taiyo yuden emk212bj224kg designation qty description c9, c14, c39 3 0.1f ceramic capacitors (0805) c11 1 47pf ceramic capacitor (0603) c15, c40 2 2.2f, 10v x5r ceramic capacitors (0612) tdk c1632x5r1a225ktb09n c49 0 not installed (0805) c23, c36 2 100pf ceramic capacitors (0603) c24 1 1000pf ceramic capacitor (0603) c25, c27, c47, c48, c54 0 not installed (0603) c28, c30 2 4700pf ceramic capacitors (0603) c29 0 not installed (1210) c37 1 270pf ceramic capacitor (0805) c53 1 3.3f, 10v x5r ceramic capacitor (0805) tdk c2012x5r1a335k quick-pwm is a trademark of maxim integrated products, inc.
evaluates: max1816/max1980/max1994 max1994 evaluation kit 2 _______________________________________________________________________________________ component list (continued) designation qty description c46 1 10f, 6.3v x5r ceramic capacitor (0805) tdk c2012x5r0j106m or taiyo yuden amk212bj106mg c50 1 4.7f, 6.3v x5r ceramic capacitor (0805) taiyo yuden jmk212bj475mg c54, c55 2 0.022f ceramic capacitors (0603) d1, d4 2 5a schottky diodes central semiconductor cmsh5-40 d2, d5, d7 3 100ma schottky diodes central semiconductor cmpsh-3 d3 1 200ma switching diode central semiconductor cmpd2838 d6 1 2a schottky diode nihon ec31qs03l j1 1 scope probe connector berg electronics 33jr135-1 ju1, ju2 2 4-pin headers jua0 jua4 5 2-pin headers ju10, ju12, ju13 3 3-pin headers l1, l2 2 0.6h, 26a, 0.9m ? power inductors (13mm x 13mm x 6mm) panasonic etqp1h0r6bfa l3 1 1.2h, 9a, 6.2m ? power inductor (10mm x 10mm x 5.6mm) sumida cdep105-1r2mc-32 n1, n4, n9, n10 4 n-channel mosfets (8-pin so) international rectifier irf7811w or fairchild fds6694 n2, n5, n6, n8, n11 5 n-channel mosfets (8-pin so) international rectifier irf7822 or fairchild fds6688 n13 1 n-channel mosfet (8-pin so) international rectifier irf7811av p1 0 not installed, p-channel mosfet (sot23) fairchild nds0605 or fairchild fdv304p q1 1 pnp power transistor (sot23) zetex fzt749 designation qty description r1 r5, r11, r17, r18, r20, r21, r28, r30, r60, r61, r62 0 not installed (0603) r55 1 10 ? 5% resistor (0603) r6, r8, r9, r56, r59 50 ? resistors (0603) r7, r15, r37, r50, r58 0 not installed (short pc trace) (0805) r10, r42 2 280k ? 1% resistors (0603) r12, r45 2 0.001 ? 1%, 1w resistors (2512) panasonic erjm1wtf1m0u r13, r29 2 49.9k ? 1% resistors (0603) r14, r16, r41, r44, r63 0 not installed (0805) r19, r27, r31 3 4.99k ? 1% resistors (0603) r22 r26 5 100k ? 5% resistors (0805) r32 1 10 ? 5% resistor (0805) r33, r34, r35, r46 4 200 ? 5% resistors (0603) r36, r54, r57 3 100k ? 5% resistors (0805) r38 1 143k ? 1% resistor (0805) r39 1 0.005 ? 5%, 1w resistor (2512) panasonic erjm1wsf5m0u r40 1 100 ? 5% resistor (0603) r43 1 20k ? 5% resistor (0805) r47 1 20 ? 5% resistor (0805) r48, r49 2 4.7 ? 5% resistors (0603) r51 1 220 ? 5% resistor (0805) r52 1 20k ? 1% resistor (0805) r53 1 100k ? 1% resistor (0805) u1 1 max1994etm (48-pin qfn) u2 0 not installed, single-logic inverter (5-pin sot23) fairchild nc7sz04 u3 1 max1980egp (20-pin qfn) none 10 shunts none 4 rubber bumpers 3m sj-5007 mouser 517-sj-5007bk or equivalent none 1 max1994 pc board none 1 max1994 ev kit data sheet none 1 max1816/max1994 data sheet none 1 max1980 data sheet
evaluates: max1816/max1980/max1994 max1994 evaluation kit _______________________________________________________________________________________ 3 component suppliers supplier phone fax website central semiconductor 516-435-1110 516-435-1824 www.centralsemi.com fairchild 408-721-2181 408-721-1635 www.fairchildsemi.com international rectifier 310-322-3331 310-322-3332 www.irf.com panasonic 714-373-7939 714-373-7183 www.panasonic.com sumida 708-956-0666 708-956-0702 www.sumida.com taiyo yuden 408-573-4150 408-573-4159 www.t-yuden.com tdk 847-390-4373 847-390-4428 www.component.tdk.com toko 408-432-8281 408-943-9790 www.tokoam.com recommended equipment 7v to 24v, >50w power supply, battery, or notebook ac adapter dc bias power supply, 5v at 100ma dc bias power supply, 3.3v at 500ma one or more dummy loads capable of sinking 40a total dummy load capable of sinking 7a dummy load capable of sinking 0.5a digital multimeters (dmms) 100mhz dual-trace oscilloscope quick start 1) ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power. 2) verify that the shunts are across ju10 pins 1 and 2 ( dpslp ), ju12 pins 2 and 3 (sus), and ju13 pins 1 and 2 (perf). the dac code settings (d4 d0) are set for 1.250v output through installed jumpers jua3, jua2, and jua1. 3) turn on the battery power before turning on the 3.3v and 5v bias power supplies. turn on the 3.3v bias power supply and then turn on +5v bias power. 4) observe the 1.250v (v out1 ) output voltage with the dmm and/or oscilloscope. look at the lx switching nodes and mosfet gate-drive signals while vary- ing the load current. 5) observe the 2.5v (v out2 ) and 1.2v (v_vid) output voltages with the dmms and/or oscilloscope. detailed description setting the output voltage the max1994 has a unique internal vid input multiplexer that can select one of two different vid dac code set- tings for different processor states. depending on the logic level at sus (ju12), the suspend mode multiplexer selects the vid dac code settings from either the volt- age at the d0 d4 inputs, or the s0/s1 (ju1, ju2) input decoder. the output voltage can be digitally set from 0.925v to 2.000v (table 1) from the d0 d4 pins and from 0.700v to 1.075v (table 2) from s0/s1 pins. there are four different ways to set the output voltage: 1) drive the external vid0?id4 inputs (no jumpers installed). the output voltage can be set by driving the vid0 vid4 with open-drain drivers (pullup resistors are included on the board) or 3v/5v cmos output logic levels (sus = low, shunt is across ju12 pins 2 and 3). 2) install jumpers jua0?ua4. sus = low (shunt is across ju12 pins 2 and 3). when jua0 jua4 are not installed, the max1994 s d0 d4 inputs are at logic 1 (connected to vdd). when jua0 jua4 are installed, d0 d4 inputs are at logic 0 (connected to gnd). the output voltage can be changed during operation by installing and removing jumpers jua0 jua4. as shipped, the ev kit is configured with jumpers jua0 jua4 set for 1.250v output (table 1). refer to the max1994 data sheet for more information. 3) suspend mode configuration. sus = high (shunt is across ju12 pins 1 and 2). as shipped, the ev kit is configured for operation in the suspend mode s0/s1 set for 0.850v output (table 2). 4) drive dpslp . dpslp can be driven by an external driver or through ju10 to introduce offsets to the output voltage (table 3). note: please indicate that you are using the max1994 and max1980 when contacting these component suppliers.
evaluates: max1816/max1980/max1994 buck1 output voltage offset control ( dpslp and ofs_) the max1994 supports three independent offsets to the voltage-positioned output. the offsets are adjusted using resistive voltage-dividers at the ofs0, ofs1, and ofs2 inputs. the offset control inputs are selected using a combination of the three logic inputs (sus, perf, and dpslp ), which also define the operating mode for the max1994. table 3 details which ofs input is selected based on these control inputs. the default for this ev kit is for zero offsets. refer to the max1994 data sheet for more information. reduced power dissipation voltage positioning the max1994 ev kit can use voltage positioning to decrease the size of the output capacitor and to reduce power dissipation at heavy loads. a current-sense resistor (r12, 1m ? ) is used to sense the inductor current and adjust the output voltage. the current-sense resistor dissipates some power, but the net power savings are substantial. the default setting for this ev kit has voltage positioning disabled. however, with the op-amp gain configured for 4 (per phase), the voltage-positioning slope can bet set at -2mv/a at the output. dynamic output-voltage transition experiment observe the output-voltage transition between 0.850v and 1.250v by setting jumpers jua0 jua4 to 1.250v and toggling the sus input between gnd and vcc, respectively. this is the worst-case transition, and should complete within 100s. max1994 evaluation kit 4 _______________________________________________________________________________________ d4 jau4 d3 jua3 d2 jua2 d1 jua1 d0 jua0 vout (v) max1816 vout (v) max1994 0 0 0 0 0 1.750 2.000 0 0 0 0 1 1.700 1.950 0 0 0 1 0 1.650 1.900 0 0 0 1 1 1.600 1.850 0 0 1 0 0 1.550 1.800 0 0 1 0 1 1.500 1.750 0 0 1 1 0 1.450 1.700 0 0 1 1 1 1.400 1.650 0 1 0 0 0 1.350 1.600 0 1 0 0 1 1.300 1.550 0 1 0 1 0 1.250 1.500 0 1 0 1 1 1.200 1.450 0 1 1 0 0 1.150 1.400 0 1 1 0 1 1.100 1.350 0 1 1 1 0 1.050 1.300 0 1 1 1 1 1.000 no cpu 1 0 0 0 0 0.975 1.275 1 0 0 0 1 0.950 1.250 1 0 0 1 0 0.925 1.225 1 0 0 1 1 0.900 1.200 1 0 1 0 0 0.875 1.175 1 0 1 0 1 0.850 1.150 1 0 1 1 0 0.825 1.125 1 0 1 1 1 0.800 1.100 1 1 0 0 0 0.775 1.075 1 1 0 0 1 0.750 1.050 1 1 0 1 0 0.725 1.025 1 1 0 1 1 0.700 1.000 1 1 1 0 0 0.675 0.975 1 1 1 0 1 0.650 0.950 1 1 1 1 0 0.625 0.925 1 1 1 1 1 0.600 no cpu shunt location ju2 shunt location ju1 s1 pin s0 pin output voltage (v) 1, 2 1, 2 gnd gnd 1.075 1, 2 1, 3 gnd ref 1.050 1, 2 not installed gnd open 1.025 1, 2 1, 4 gnd v cc 1.000 1, 3 1, 2 ref gnd 0.975 1, 3 1, 3 ref ref 0.950 1, 3 not installed ref open 0.925 1, 3 1, 4 ref v cc 0.900 not installed 1, 2 open gnd 0.875 not installed 1, 3 open ref 0.850 not installed not installed open open 0.825 not installed 1, 4 open v cc 0.800 1, 4 1, 2 v cc gnd 0.775 1, 4 1, 3 v cc ref 0.750 1, 4 not installed v cc open 0.725 1, 4 1, 4 v cc v cc 0.700 table 1. max1994 output-voltage adjustment settings (sus = low) table 2. max1994 output-voltage adjustment settings, suspend mode (sus = high)
this ev kit is set to transition the output voltage at 9mv/s. the speed of the transition can be altered by changing resistor r38 (143k ? ). during the voltage tran- sition, watch the inductor current by looking across r12 with a differential scope probe, or by inserting a current probe in series with the inductor. observe the low, well- controlled inductor current that accompanies the volt- age transition. the same slew-rate and controlled induc- tor current are used during shutdown and startup, resulting in well-controlled currents into and out of the battery (input source). there are two other methods to create an output-volt- age transition. select d0 d4 (jua0 jua4). then either manually change the jua0 jua4 jumpers to a new vid code setting (table 1), or remove all jumpers and drive the vid0 vid4 pc board test points externally to the desired code settings. disabling the max1980 for lower output current cpu applications, the max1980 slave controller can be disabled by cutting the trace shorting pins 1 and 2 of ju11. the slope of the voltage-positioned load line is decreased by one- half. changing the setting of the gain pin can compen- sate for the reduced slope. with the slave disabled, the max1994 can be operated in skip mode. load-transient experiment one interesting experiment is to subject the output to large, fast-load transients and observe the output with an oscilloscope. this necessitates careful instrumenta- tion of the output, using the supplied scope-probe jack. accurate measurement of output ripple and load-tran- sient response invariably requires that ground clip leads be completely avoided and that the probe hat be removed to expose the gnd shield, so the probe can be plugged directly into the jack. otherwise, emi and noise pickup may corrupt the waveforms. most benchtop electronic loads intended for power- supply testing lack the ability to subject the dc-to-dc converter to ultra-fast load transients. emulating the sup- ply current di/dt at the cpu vcore pins requires at least 10a/s load transients. one easy method for generating such an abusive load transient is to solder a power mosfet directly across the scope-probe jack. then drive its gate with a strong pulse generator at a low duty cycle (<5%) to minimize heat stress in the mosfet. vary the high-level output voltage of the pulse generator to vary the load current. to determine the load current, you might expect to insert a meter in the load path, but this method is pro- hibited here by the need for low resistance and induc- tance in the path of the dummy load mosfet. there are two easy alternative methods of determining how much load current a particular pulse-generator ampli- tude is causing. the easiest method is to observe the currents through inductors l1 and l2 with a calibrated ac current probe or by looking across r12 and r45 with a differential probe. in the buck topology, the load current is approximately equal to the average value of the inductor currents. input active ofs inputs mode sus ju12 perf ju13 dpslp ju10 ofs2 ofs1 ofs0 battery sleep (offset = 0%) 00 0 100 battery (offset = 0%) 00 1 010 performance sleep (offset = 0%) 01 0 001 performance 0 1 1 0 0 0 suspend 1 0 0 0 0 0 suspend 1 0 1 0 0 0 suspend 1 1 0 0 0 0 suspend 1 1 1 0 0 0 0 = logic low or input not selected 1 = logic high or input selected evaluates: max1816/max1980/max1994 max1994 evaluation kit _______________________________________________________________________________________ 5 table 3. max1994 offset selection truth table
evaluates: max1816/max1980/max1994 max1994 evaluation kit 6 _______________________________________________________________________________________ d2 d3 d4 d0 d1 s0 s1 skp2/sdn lin/sdn pgood ton 21 19 18 17 16 15 14 13 22 23 24 12 11 10 9 8 7 3 4 48 47 5 6 sus ofs2 dpslp# ofs1 osf0 gain cs1+ cs1- bst1 lx1 fbs gds 42 43 v dd pgnd 41 40 dl2 dh2 39 38 lx2 bst2 35 cs2 34 out2 46 dh1 ofs2 perf dl1 45 44 agnd 30 37 v+ 25 ovpset vcc r54 100k ? r38 143k ? 1% linfb linbse ovpset 26 time 29 linbse 28 lingood backside metal is connected to gnd 27 linfb max1994 u1 ofs1 ofs0 gain cs1+ cs1- cm+ cs1+ bst1 agnd1 c53 3.3 f r55 10 ? c27 open lx1 vout1 dpslp# sus 1 2 3 vcc ju12 agnd1 1 2 3 vcc ju10 agnd1 agnd1 r56 0 ? c47 open agnd1 c11 47pf dh1 trig dl2 dh2 lx2 bst2 perf 1 1 2 2 q1 3 3 vcc 3v3 ju13 agnd1 agnd1 agnd1 vdd gds vbatt agnd1 r59 0 ? c48 open cs2 agnd1 r40 100 ? c24 1000pf vout2 vcc ton1 r48 4.7 ? cm+ c54 0.022 f cs1- r49 4.7 ? vout1 (cm-) c25 open c55 0.022 f r51 220 ? 3v3 agnd1 c50 4.7 f 6.3v c49 open linbse r52 20k ? 1% v_vid vout1_sense agnd1 agnd1 c46 10 f 6.3v r53 100k ? 1% linfb vout1 gnd_sense gds pgood r57 100k ? vcc 1 2 3 ju8 agnd1 vcc 1 2 3 ju7 agnd1 vid0 vid1 vid2 vid3 vid4 s0 s1 skp1/sdn 20 skp1/sdn 1 2 3 vcc ju4 agnd1 agnd1 31 v cc ilim2 36 ilim2 2 cc ilim1 1 ilim1 lingood agnd1 vout2 c12 0.22 f vdd r32 10 ? vcc ref 32 ref 33 fb2 2v ref agnd1 c8 0.22 f r61 open r62 open r1 open r4 open slave_off 1 2 3 vcc vcc vcc ju3 cut here (pc trace) agnd1 p1 open gain 1 2 3 ref r8 0 ? agnd1 r10 280k ? 1% r11 open vcc ilim1 ref r13 49.9k ? agnd1 limit r2 open agnd1 c23 100pf r14 open r15 short vcc ilim2 ref r16 open agnd1 r3 open r5 open vcc ovpset ref r6 short agnd1 r17 open r18 open ofs2 ref r19 4.99k ? 1% agnd1 vout1 r20 open r21 open ofs1 ref r27 4.99k ? 1% agnd1 vout1 r28 open r30 open ofs0 ref r31 4.99k ? 1% agnd1 vout1 figure 1. max1994 ev kit schematic (sheet 1 of 4)
evaluates: max1816/max1980/max1994 max1994 evaluation kit _______________________________________________________________________________________ 7 dh1 c2 10 f 25v c1 open vbatt c4 10 f 25v c20 open c3 10 f 25v vdd d2 cmpsh-3 c15 2.2 f 10v d1 vdd d6 4 n4 1 2 3 4 7 6 5 8 6 7 8 5 n1 1 2 1 2 3 dh1 c9 0.1 f r7 short (pc trace) bst1 lx1 l1 0.6 h trig 1 2 3 4 7 6 5 8 n5 1 2 3 4 7 6 5 8 n2 d7 cmpsh-3 r12 0.001 ? r9 0 ? r60 open cm+ c10 330 f 2.5v vout1 j1 scope jack c7 open c6 330 f 2.5v c5 330 f 2.5v c16 open c13 open d3 (cm-) vdd +5v vbias gnd vout2 gnd c32 330 f 2.5v c31 330 f 2.5v c26 open c29 c35 open c33 330 f 2.5v c19 open c18 330 f 2.5v c34 open gds dh2 vbatt 1 2 3 4 7 6 5 8 n13 c21 10 f 25v c22 open l3 1.2 h dl2 bst2 lx2 cs2 1 2 3 4 7 6 5 8 n11 c14 0.1 f r58 short (pc trace) r39 0.005 ? 1% figure 1. max1994 ev kit schematic (sheet 2 of 4)
evaluates: max1816/max1980/max1994 max1994 evaluation kit 8 _______________________________________________________________________________________ vdd vid_vcc ju5 r26 100k ? r25 100k ? vid4 vid3 jua4 agnd1 s1 ref agnd1 agnd1 agnd1 agnd1 jua3 jua2 jua1 jua0 vid2 vid4 vid3 vid2 vid1 vid0 vid1 vid0 r24 100k ? r23 100k ? r22 100k ? 1 4 2 3 vcc ju2 agnd1 s0 ref 1 4 2 3 vcc ju1 agnd1 figure 1. max1994 ev kit schematic (sheet 3 of 4)
evaluates: max1816/max1980/max1994 max1994 evaluation kit _______________________________________________________________________________________ 9 c41 10 f 25v c40 2.2 f 10v c42 10 f 25v c43 open c44 open c45 10 f 25v disable 1 12 11 17 16 bst 14 dh 15 lx 10 dl 5 cs+ max1980 u3 13 dd gnd 19 ilim 20 trig 18 limit v cc cm+ backside metal is connected to gnd cm+ 2 cm- v dd r47 20 ? v+ vccs vbatt vdd vcc agnd2 c38 0.22 f agnd2 r36 100k ? agnd2 r37 short (pc trace) 1 2 3 vccs open vccs ref ju11 c36 100pf r41 open r42 280k ? 1% r29 49.9k ? 1% trig limit 8 gnd 9 pgnd 7 pol agnd2 r46 200 ? c28 4700pf vout1 r33 200 ? 1 2 3 vcc ju6 agnd2 3 ton cm+ 1 2 3 vcc ju9 550khz 200k ? float = 300khz agnd2 r50 short (pc trace) agnd2 agnd1 1 2 3 4 8 5 6 7 n9 1 2 3 4 8 5 6 7 n10 vdd d5 cmpsh-3 c39 0.1 f vout1 l2 0.6 h r45 0.001 ? 1 2 3 4 8 5 6 7 n6 1 2 3 4 8 5 6 7 n8 d4 r35 200 ? c30 4700pf 4 cs- 6 comp r34 200 ? r43 20k ? r44 open c37 270pf slave_off nc7sz04 u2 3 n.c. 1 a 2 v cc y 4 5 agnd2 r63 open figure 1. max1994 ev kit schematic (sheet 4 of 4)
evaluates: max1816/max1980/max1994 max1994 evaluation kit 10 ______________________________________________________________________________________ shunt position fb2 pin max1994 output 1 and 2 connected to vcc v out2 = 1.8v 2 and 3 connected to gnd v out2 = 2.5v not installed connected to resistor-divider r61/r62. (cut pc trace shorting ju2 pins 2 and 3 on the solder side.) adjustable mode 1.0v < v out < 5.5v. (refer to the max1994 data sheet for selection of output capacitor and inductor.) shunt position skp2/ sdn pin max1994 output 1 and 2 connected to vcc buck2 output enabled, normal pfm/pwm operation (default), v out2 = 2.5v 2 and 3 connected to gnd shutdown mode not installed floating low-noise forced-pwm operation, v out2 = 2.5v shunt position lin/ sdn pin max1994 output 1 and 2 connected to vcc linear-regulator output enabled, v_vid = 1.20v 2 and 3 connected to gnd shutdown mode, v_vid = 0v shunt position sus pin effect 1 and 2 connected to vcc the suspend mode vid code, as programmed by s0 and s1, is delivered to the dac. 2 and 3 connected to gnd the suspend mode multiplexer is not used. shunt position skp1/ sdn pin max1994 output 1 and 2 connected to vcc buck1 output enabled. normal pfm/pwm operation. v out1 is selected by vid dac code (d0 d4) settings. 2 and 3 connected to g n d shutdown mode, v out1 = 0v not installed floating. connected to skip1/ shdn pad. low-noise forced-pwm operation. (max1994 must be driven by an external signal.) shunt position pol pin trigger polarity select 1 and 2 connected to vcc trigger on the rising edge (default). 2 and 3 connected to gnd trigger on the falling edge. install additional input capacitors c1 and c20 for in-phase operation. jumper and switch settings table 4. jumper ju3 function (fb2) table 5. jumper ju4 function (skp1/ sdn ) table 6. jumper ju6 function (polarity selection, max1980) table 7. jumper ju7 function (skp2/ sdn ) table 8. jumper ju8 function (lin/ sdn ) table 9. jumper ju12 function (suspend mode)
evaluates: max1816/max1980/max1994 max1994 evaluation kit ______________________________________________________________________________________ 11 figure 2. max1994 ev kit component placement guide?op silkscreen
evaluates: max1816/max1980/max1994 max1994 evaluation kit 12 ______________________________________________________________________________________ figure 3. max1994 ev kit pc board layout?omponent side
evaluates: max1816/max1980/max1994 max1994 evaluation kit ______________________________________________________________________________________ 13 figure 4. max1994 ev kit pc board layout?nd layer 2
evaluates: max1816/max1980/max1994 max1994 evaluation kit 14 ______________________________________________________________________________________ figure 5. max1994 ev kit pc board layout?nd layer 3
evaluates: max1816/max1980/max1994 max1994 evaluation kit ______________________________________________________________________________________ 15 figure 6. max1994 ev kit pc board layout?older side
maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ? 2002 maxim integrated products printed usa is a registered trademark of maxim integrated products. evaluates: max1816/max1980/max1994 max1994 evaluation kit figure 7. max1994 ev kit component placement guide?ottom silkscreen


▲Up To Search▲   

 
Price & Availability of MAX1994EVKIT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X